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1. INTRODUCTION

In the sciences and other disciplines, it is quite common to
encounter situations where random variables appear in combinations.
Two combinations are the product and the ratio of two random vai-
ables. Given such combinations, it is required to know the mean and

- -, the variance and it is preferable that the mean and variance be deter-
mined from the original random variables. Thus, if U = XY and
V = X/Y then we want to know the arithmetic means and variances of U
and V based on our knowledge of X and Y.

2. ON THE PRODUCT OF TWO RANDOM VARIABLES
The mean and the variance of a product are well known [ 5.

To obtain the result in a more simple manner, we note that

(2.1) Cov(X,Y) = E(XY) - E(X) E(Y)

provided that the moments exist. Henceforth, we will assume that the
moments exist.

By rearranging (2.1), we obtain

(2.2) E(XY) = Cov(X,Y) + E(X) E(Y).

Further, the definition of the linear correlation coefficient PX,Y is

given by
(.)CoV(X, Y)(2.3) PXY 1 VrX]/2[Vr 1)]/2

- Var(X)] 1,'a[(Y)] /
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By introducing (2.3) into (2.2), it is seen that

(2.4) E (XY)=E M)E (Y) + pX Y~(Var(X) 1 12(Var(Y) 1 1/2a

To obtain the variance of a product of random variables, we
note that

(2.5) VartOCY= E( XIY )-E(XY)]

and that

(2.6) Cov(X2 ,Y2 ) =E (X2Y2 )-E (X2 )E(Y2

Then from (2.1) and (2.5),
2 2 X2) 2Cov (X , Y2) = Var (XY) + (Cov (X, Y) + E(M)E(Y)1 - E( )E(Y2

2-Var(XY) +(Cov (X,Y)1 +2 Cov(X,Y) E(X)E(Y)

-Var (X) Var (Y) - Var (X) C F(Y)1 Var(Y) [E(X)12

Then, by rearrangement of terms,

(2.7) Var(XY) =Cov(X 2Y )-f2Cov(XY) 1 -_2 Cov(X, Y) E ()E(Y)
2 2+ Var(XM Var (Y) + VarX)I(E (Y) I + Var (Y) E E X) I

If X and Y are independent or uncorrelated, (2 .2)and (2.7) reduce to

(2,8) E(XY) =E(X) E(Y),

and

(2.9) Var(XY) =Var(X)Var(Y) +Var(X)[E(Y)1 +Var(Y)(E(X)1
In addition, if the two variables are independent or uncorrelated, then

(2.10) Var(XY) = Var(X) Var(Y)

only if the means of both random variables are zero.

3. ONE SET OF RESULTS FOR THE MEAN AND VARIANCE OF A RATIO_
OF" RANDOM VARIABLES

We can write, using (2.3) E(-I~)- E (Y) Ei)

Then as in (2.4),

(3.2) E Y E(Y) E rJ+ p ~Var(Y) 1/ Vark x)1/2
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provided that all the terms exist. In Section 5, it is shown that

E[--1 exists provided that the density function has a zero of order

at least r at the origin. For example, E[ -  does not exist for the
Normal Distribution. xI Y elcn wthj in ( 2.7 ).We obtain Var (-fl,o by replacing Xwih-i n(27

+ aar)[ (_j) 22

Var(Y) 1 VrEY

If Y and - are uncorrelated, or if Y and X are indep2ndent
(see Section 5), t~en

and

under the usual assumptions of existence.

If Y and X are uncorrelated Normals, E -Y-) and. Var (1 - do
not exist. The proof of the lack of existence of the mean is shown in
Section 5. Since the mean does not exist, neither does the variance.

In all of the above, we note the requirement for information
about the reciprocal of the denominator term.

4. ANOTHER RESULT FOR THE MEAN AND VARIANCE OF A RATIO OF
RANDOM VARIABLES.

By using (2.3) we can write

(4.1)PX, Y/X =
[Var(X)] 1/2 Var (i_)] 1/2

Then, by rearrangement of terms, 1/2 1/2

(4.2) E E(Y) - PXY/X war(x) ] 1 ar

E(Y) - E
E(X) E(X)

provided that the terms exist,
j
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(Also from (2.7), where we replace Y by "

Rearrangement ygives CorI2 , 1Y-)]+[o(,x--
(4.4) Var Var(Y) Cv (-) J [-

Var(X) + [E(X)1 2

2 Co(X, ) E(X) E -) -VarX [E -)]2

+

V - Var(X) + [ E(X) ] 2

Introducing (4.2) into (4.4), we get

Va(Y -ovox
(4.5) Var (-) = -

Vat(X) + 1

2 Cov(X) VrE(X) IE(Y)- CoV"(X ar(X E0X
[E (X) + E2(X

If X ad areuncorrelated,
(4I6)Eo E(X) providedthat E(X) ,
and 2 2

(4.7) Var-Y) = Var(Y) [E(X) -Var(X) [E(y) 2

VaX 21 2

[E(X)] {Var(X) +[E(X)] 2

provided that E(X) 0.

Analagous with Section 3, we are highly dependent on infor-
mation about relationships between the numerator random variable and
the ratio of the random variables.

5. DETERMINATION OF THE MEAN OF A RATIO BY USE OF
CONDITIONAL PROBABILITIES

It follows from the definition of conditional probability that

(5.1) E[- -= {jEXY (Ey-EIYx
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-EyjEY1 EXtY(ttY)

If we consider, as a special case the Bivariate Normal, we
know that the marginal distributions including the conditional are
Normal distributions. And for the Normal, it is well known that

x]-L does not exist so that E[Y does not exist.1 Y

More generally, if X and Y are independent, then

since if Y and X are independent, then Borel functions of Y and X
are independent.

The phenomenon of the occurence of the non-existence of

x[-] is portrayed more graphically in the case of independence in aE

paper by H. A. David [2, pp. 122-123 1 as follows:

Let G(x) be a cumulative distribution function. Define a
central moment of negative order -r by

(5.2) t (x)= f0 x - r dG(x) dx.

This moment exists in the discrete case and also in the continuous
case provided that the density function g(x) has a zero of order at

least r at the origin (i.e., lim x- r g(x) = 0).
x-*0

Consider the case where the random variables are continuous.
Let Y be independent of X with density function f(y); and if

L I W(x) and P.' (y) exist,-r r
+oo -r +00 r

(5.3) W._r(X).(Y) = .x g(x) dx fL y f(y) dy.

or,

(5.4) E FiXr r00 XIYr )f(y) dxdy =E[ Yrl Er1
In order that the density function g(x) have a zero of order of

least r at the origin, we are saying, in effect, that the random
variable is either all positive or all negative, and If 0 is in the range
of the random variable, then g(x) must be an infinitesimal at X=0.
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6. RAO' S PROCEDURE FOR DETERMING E(K)

Rao [ 7 ] determines the Expected Value of the ratio of Normally
distributed variates in essentially the following fashion:

Let X and Y be bivariate normal (ix, , a2 , a ,p);
- oo<x, y<+o. x yY- an Z - x - x

Now, let U- and Z a , sothat Y=y +Ua y

and X = Px + Z a . From the definitions of U and Z, we have,
E(U)=E(Z)=0 and a 2

u z
Then,

(6.1) X Lx + Z (Y -y ) yx a

xx
I I + ___ 1 + .

Rao expanded the last term under the assumption of convergence of the

sum. It is well known, however, that converges provided that
1+a Za

-1 <a <+ 1. This requirement in our case is that -1 <-a- < 1 or

equivalently ZaI < I j. In terms of the original random variable,
1X- 

P x
the requirement is that -1< <+1 or that 0< X<2 x forx
p > 0, andthat 2 1x<X<0 for p <0. Butsince -oo<X<+oo for

the Normal Distribution, the requirement is not satisfied. The pro-
cedure requires that V x, p y ? 0, also.

Nevertheless, the procedure is appropriate for random variables
which satisfy the convergence conditions so we continue the develop-
ment of Rao' s procedure, where Z and U are appropriate standard-
ized random variables.

We note that finite limits of the denominator random variable
are a prerequisite. As examples, the procedure is valid for approp-
riately parameterized uniform or binomial random variables. It
probably is appropriate for cases where we say that the Normal
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distribution satisfies the data, since we probably nean that a trun-
cated Normal satisfies the data, it being rare for an item or test
measurement to take on both positive and negative values. By slightly
rewriting (6.1) and performing the expansion we obtain

(6.2) U x + Z2 . 3

+ + .

= 22 3X X PX

Cr V U 2 Ua2

+ Y x U +x ...
x x

Taking Expected Values, we obtain

PV - + 2E(Z2) a E(Z3)(6.3) E- + Il x
LX 2 3

(-l)' ar E(Z) )rIaE(U
+ x } {

M

a2 E Z2 U_,n-1ian E nU

2 +n*~

00 (- )Z

I1 i=2 I
f /3

+ a E x
Y J=1 j +1

If, in addition to the prior conditions on the range of X and
tha t p. ? 0, we specify that Z, U are bivariate central symmetrically

rdistributed. Then from [8, pp. 23], we have that
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E(Z 2 1 + 1 )=O, i=0,1,...

and

E(Z i U) =0 for i an even integer.

Consequently,

(6.4) E- 3 1 + Z (-- 2j 2 Txx x 

If, in addition, we add the condition of independence
between Z and U or X and Y, then (6.4) reduces to

rY = -Y ~ 21 E(Z 21
(6.5) E [ = x  + x a

x f x

which exists under the usual conditions.

We note that (6.3), (6.4) and (6.5) presented above could

have been obtained by use of a Taylor Expansion of -L , the classicalx
Propagation of Errors procedure.

We conclude this Section by noting that Rao' s procedure for

determining E[-LJis valid only under very special circumstance.

These are not satisfied by the Bivariate Normal.

Y
7. THE VARIANCE OF - , FOLLOWING FROM RAO' S PROCEDURE

Following the classical definition, we can write

(7.1) Va r (7 E [Y- E .Y)

For the terms in the square brackets, we utilize (6.2) and

(6.3) and after extensive algebraic simplification, we arrive at

2 a 2 21

(7.2) Var = . -- + 2Var(Z

lx ~x i=2 3 x
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i +k

2 X X ~I- (I Cov(Zi Z
i=k k-2 k

I<k

+ 2~ (--- Cov(ZU) +
2x 1+x

a i
+ j

E 1 (-1)'+J x ,zJ
x-- J= 1 1± J

v ; + : Var(Z~uJ
2 j 12j
x Ilk

COj +m
+ 2 (-E Cov(Z IT. zmU)

j=O m=1 j +mJ<m ' X

) where, for example, Var (Zj U) = E [ Zj U-E (Z U)] 2

Cov (Z1 U, zmu )= E[ZJ U-E (Zj U)] zmU-E (Zmu)

Cov(Z,U)=E[Z-E(Z)l [U-E(U)] =E(ZU).

If we take only the first term in each of the curly brackets, we
obtain an approximation 2

p2 a2  P p a
(7.3) Var(-' ' "  2  , + +

x -2xL) 4 -3 2
Lx Lx 11x

22 22
!za + JLa- 2ppa

4

which can be obtained, also, by the usual Propogation of Errors
procedures.

If we specify that X and Y (and consequently U and Z) are
independent, then (7.2) reduces to
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2 2 21

(7.4) Vax= - + Var(Z i ) +2 2 i 2 2

x Px Ix
i+k2)

2a E x (1)i+k Cvzi k
i=1 k=2 i+k Cov(ZiZ
i<k 'xa2  2J Va 7
a 2 0'2

2 1 + = 2j

Ix P x
and the approximation reduces to

22 22

(7.5) Var ) x 4 y

8. THE DISTRIBUTION OF THE RATIO OF NORMAL VARIATES
C. C. Craig [ 1, pp. 24-32 1 presents Fieller' s development

[3, pp. 424-440 1 on the distribution of a ratio and Geary' s approxi-
mation [4, pp. 442-460 1 . The following is a summary of the results:

2 2
Thn Assum (x,Y) is Bivarae Normal or BVN (Ix, ,, ,ia p).

(8.1) f(x,y) 27T(1-l2)1/2 e-1/2(1-p2I-x )2

+ 
x

' Let V= - - a n d let x =x. Then, dvdax-

(8.2) g(v)=f +Ixtf(x,xv) dx = f0 x f(x,xv) dx - fox f(x,xv)dx

+00 0

Q xv =xf ddxdyandeRde)in

Len x f(x,xv)dx-2 fo x f(x,xv) dx
Letting

Q(v) =.Cox f(x,xv) dx, and R(v) f0-2x f(x,xv) dx, then

34o
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(8.3) g(v) =Q(v) +R(v)

where R(v) >0 since -2 t0 x f(xv, x) dx>0.
First, it can be shown that 2t U2 - ( Y + v x ) V L x
(8.4) Q(v)=Ir 2. 2pva a +,2 2)3/2

2 {a 2 2pvY a +V 2a 2

xy x

Now, R(v) is of the same form as Q(v) with the exception that the
limits of integration are different. Thus

(8.5) R(v) = ae 2-2Q(v) -

-
x 2

f-B\ fAU 1 2
where 1 - - e dx.

Now, returning to the distribution of the ratio (8.3),
g(v) = Q(v) +R(v), we replace R(v) by the result in (8.5) to obtain

2a
2

(8.6) g(v)=Q(v)-2Q(v) )(-B)+ ae

= Q(v) 1-2(

Thus we have the distribution of the ratio in closed form, where Q (v)
is given by (8.4), and

" 341Iq
mI



FRISHMAN

A: -2pvra +v a
y x y x

B=i 2+ a2  ( +v )aa

(8.7) 2 2 2 2C=Zx2-° 0.y x y x y + Yo

S2= ( 1_ 02) a2 a2

we can rewrite Q(v) by using (8.7) as follows:

(8.8) Q(v) = B (c -2A/2)

Now, we return to (8.5), and (8.7). We note that as x-c,
t--n B-* c and C- oo . As a result,

1 C
2--U A(8.9) e . 0,

and ,( B
-AaJ

From this, we conclude that

(8.10) R(v)-*0 as ix-)co

Therefore, for L sufficiently large, we can get a good
approximation of g(v) by Q(v), only.

Thus, for the case where [jx is large, from (8.4) we have

2 2 2 2 2 2
xy xy xyy x xy

(8.,11 Q((v) e22 +v 2  )3/2

y y x

We impose the transformation
V[Lx- Ly

_ B
(8.12) z 2  v a 21/2 with dz- 3/2 dv,

(a y - 2 P v X y x+v a A

342
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and we note that the denominator of Q(v) is positive for all v.Hence ." Val - u.. ]

(8.13) Q(z)= Q 2 V 2 2)1/2

x y
It follows that, as Lx-L'* for afinite, z approaches a N(0,11.

This is the Geary result[4 1 . x

If in (8.6), ux = ty = 0, we obtain

p..2)1/2

(8.14) g 1 (v). (1- P2 1 a

r Y xIT( ~- 2 Pv +v 2 -

a generalized Cauchy distribution.

The cumulative distribution function for (8.14) is

1 1-p(8.151 G(v)= fV~gv dv ar tg .arx vPa y ]

as obtained from Gradstein and Ryzhik, [ 6, p. 82].

The generalized Cauchy obtained by this writer is a simple
extension and has utility more from a theoretical viewpoint than an
applications viewpoint.

However, the Geary result has great applicability as do the
approximation results in Sections 6 and 7 when one is willing to
assume that X and Y are Bivariate Normal. As noted in Section 6,
in the real world, few if any, random variables are truly normally
distributed since few, if any, can range from - oo to + oo. Few, if any,

will take on both positive and negative values! Thus the mathematical

abstraction, the Normal Distribution, can be at best a good approxi-
mation, and a good approximation only around the mean of the data,
since ordinarily one does not see data points in the extreme tails of
the Distribution.
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9. SUMMARY

In Sections 3 and 4, exact expressions are given for the Mean
and the Variance of a Ratio of random variables, regardless of the form
of the random variables. One problem is that certain correlation co-
efficients must be known or assumed to be zero in order to use the
formulae. Also, there is the usual requirement that the moments exist.
Based on the results of Section 5, we know that these exact results
are not appropriate for the Normal Distribution and those other distri-
butions where the random variable takes on negative and positive
values and/or the value 0 with probability greater than 0.

In Section 6, a procedure is given for getting the Mean of a
Ratio. The requirement is that the denominator random variable be
such that either 2ix<X <0 when px Is negative or that 0<X<2 x
when p is positive. Also, we require that the Mean of the numerator

10. In Section 7, we obtain the Variance. Since the results in
both Sections require summing infinite series, approximations can be
obtained by terminating the summation wherever desired.

Finally in Section 8, we sketch out the development for an
approximation of the distribution of the ratio if both random variables
are Normally Distributed, in the sense that the Denominator variable
does not take on both positive and negative values. It is claimed that
it is rare for actual random variables to be Normally distributed in the
mathematical sense. Rather, the Normal Distribution is a reasonable
approximation at best, and under these circumstances, the results
presented in Sections 6,7 and 8 are appropriate to be used.
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